Institute of Crystallography - CNR

A promising 1D Cd-based hybrid perovskite-type for white-light emission with high-color-rendering index

A one dimensional (1D) perovskite-type (C6H7NBr)3[CdBr5] (abbreviated 4-BAPC) was synthesized by slow evaporation at room temperature (RT). 4-BAPC crystalizes in the monoclinic system with the space group P21/c. The 1D inorganic chains are formed by corner sharing CdBr6
octahedra. Thermal measurement shows that 4-BAPC is stable up to 190 °C. Optical characterization demonstrates that the grown crystal
is an indirect bandgap material with a bandgap value of 3.93 eV, which is consistent with theoretical calculations. The electronic structure, calculated using density functional theory, reveals that the valence band originates from a combination of Br-4p orbitals and Cd-4d orbitals, whereas the conduction band originates from the Cd-5s orbitals. The photoluminescence spectroscopy shows that the obtained material exhibits a broad-band white light emission with extra-high CRI of 98 under lambda-exc=380 nm. This emission is mainly resulting from the self-trapped exciton recombinations within the inorganic CdBr6 octahedron, and the fluorescence within the organic conjugated ammonium salt.

Year
2022
Journal
RSC advances
Impact factor
4.036
RESEARCH AREA
KEYWORDS
Authors
Mahdi Gassara, Rawia Msalmi, Xinghui Lui, Fredj Hassen, Anna Moliterni, Naoufel Ben Hamadi, Ahlem Guesmi, Lotfi Khezami, Taoufik Soltani, Houcine Naili
Authors IC CNR