Nanoscale Phase Separation of Incommensurate and Quasi-Commensurate Spin Stripes in Low Temperature Spin Glass of La2−xSrxNiO4
While spin striped phases in La2−xSrxNiO4+y for 0.25 < x < 0.33 are the archetypal case of a 1D spin density wave (SDW) phase in doped antiferromagnetic strongly correlated perovskites, few information is available on the SDW spatial organization. In this context, we have measured the spatial variation of the wave vector of the SDW reflection profile by scanning micro X-ray diffractions with a coherent beam. We obtained evidence of a SDW order–disorder transition by lowering a high temperature phase (T > 50 K) to a low temperature phase (T < 50 K). We have identified quasi-commensurate spin stripe puddles in the ordered phase at 50 < T < 70 K, while the low temperature spin glassy phase presents a nanoscale phase separation of T = 30 K, with the coexistence of quasi-commensurate and incommensurate spin stripe puddles assigned to the interplay of quantum frustration and strong electronic correlations.
Year |
---|
2021 |
Journal |
Condensed matter |