Institute of Crystallography - CNR

Paper-based electrochemical peptide sensor for on-site detection of botulinum neurotoxin serotype A and C

Botulinum neurotoxins (BoNTs) produced by soil bacterium Clostridium botulinum are cause of botulism and listed as biohazard agents, thus rapid screening assays are needed for taking the correct countermeasures in a timely fashion. The gold standard method relies on the mouse lethality assay with a lengthy analysis time, i.e., 2-5 days, hindering the prompt management of food safety and medical diagnosis. Herein, we propose the first paper-based antibody-free sensor for reliable and rapid detection of BoNT/A and BoNT/C, exploiting their cleavage capability toward a synthetic peptide able to mimic the natural substrate SNAP-25. The peptide is labelled with the electroactive molecule methylene blue and immobilized on the paper-based electrode modified with gold nanoparticles. Because BoNT/A and BoNT/C can cleave the peptide with the removal of methylene blue from electrode surface, the presence of these neurotoxins in the sample leads to a signal decrease proportional to BoNT amount. The biosensor developed with the selected peptide and combined with smartphone assisted potentiostat is able to detect both BoNT/A and BoNT/C with a linearity up to 1 nM and a detection limit equal to 10 pM. The applicability of this biosensor was evaluated with spiked samples of orange juice, obtaining recovery values equal to 104 ± 6% and 98 ± 9% for 1 nM and 0.5 nM of BoNT/A, respectively.

Biosensors & bioelectronics
Impact factor
Caratelli V.; Fillo S.; D'Amore N.; Rossetto O.; Pirazzini M.; Moccia M.; Avitabile C.; Moscone D.; Lista F.; Arduini F.