Istituto di Cristallografia - CNR
Ricercatore

Moliterni Anna

Bari

Dr. Moliterni graduated in Physics (general address) at the University of Bari in December 1991 and received a mark of 110/110 cum laude (Title of the Thesis: ’Generazione di radiazione laser in processi di ’scattering’ Raman per applicazioni a diagnostiche in fase gassosa’).
She carried out the work of Thesis during a stay of 18 months (July 1990 – December 1991) at the Raman Spectroscopy and Remote Sensing Laboratories of the ENEA in Frascati (RM).

Dr. Moliterni has over 30 years experience in the field of Crystallography and started her research activity  in 1992 by collaborating, for more than twenty years, with Prof. Carmelo Giacovazzo, internationally renowned scientist.

WORK EXPERIENCE:

  • February 2001 – Present: Researcher (full time/permanent position) -Institute of Crystallography (IC)- CNR, Bari – Italy;
  • November 1998 – February 2001: Researcher (full time/not permanent position) – Institute for the Development of Crystallographic Methodologies (IRMEC) – CNR, Bari – Italy;
  • July 1997 – June 1998: Collaboration with IRMEC – CNR, Bari – Italy;
  • June 1996 – June 1997: Research Fellow at IRMEC – CNR, Bari – Italy;
  • April 1996 – June 1996 : Collaboration with IRMEC – CNR, Bari – Italy;
  • March 1995 – February 1996: Research Fellow at IRMEC – CNR, Bari – Italy;
  • December 1992 – November 1994: Research Fellow at IRMEC – CNR, Bari – Italy;
  • September 1992 – November 1992: Research Fellow at Istituto dei Materiali – CNR, Tito Scalo (PZ),  Italy;
  • January 1992 – July 1992: ENEA Guest, Frascati (RM).

Since March 2004, Dr. Moliterni is faulty in charge of the X-ray single crystal diffraction laboratory at the IC-CNR of Bari (KappaCCD Bruker-Nonius diffractometer).

The impact of the research activity of Dr. Moliterni in the field of the Crystallography  is proved by her role of:

ISI Web of Knowledge source: Overall number of publications: 152 documents, H-index = 29; Sum of Times Cited (Without self citations): > 13300, Citing articles (Without self citations) > 12650;

Scopus source:  Overall number of publications: 124 documents, H-index = 26; Number of citations  > 13300, Co-authors > 300 (Scopus Author ID: 7004663206)

Google scholar source: https://scholar.google.it/citations?user=O5XpDScAAAAJ&hl=en

  • Ab-initio structure solution of crystalline materials with different chemical composition and complexity by micro or nanocrystalline powder diffraction data (PDD) or single crystal diffraction data (SCDD);
  • Development and implementation in crystallographic software of innovative theoretical, methodological and computing tools devoted to 1) structure solution and refinement by SCDD; 2) structure solution and refinement by PDD; 3) qualitative and quantitative phase analysis by PDD.
    In case of PDD, her research activity covers the following topics: indexing, space group determination, structure solution by traditional methods (direct methods and Patterson methods) and global optimization methods, structural optimization and Rietveld analysis, phase identification;
  • experimental expertise in single-crystal and powder diffraction.

Very recently, the expertise in Crystallography allowed Dr. Moliterni to characterize challenging new compounds like 2D organic-inorganic hybrid perovskites [see https://www.psi.ch/en/macromolecular-crystallography/scientific-highlights/lighting-up-the-appealing-world-of-hybrid; Adv. Mater. (2022). 34, 2106160] and nanocrystalline metal chalcohalides [see  https://www.cnr.it/it/comunicato-stampa/11017/nanomateriali-inesplorati-per-semiconduttori-senza-piombo; Angew. Chem. Int. Ed. (2022). 61, e202201747; Nat. Comm. (2022). 13, 3976].

  • Istituto Italiano di Tecnologia (IIT), Genova, Italy (Prof. L. Manna, Dr. M. Arciniegas, Dr. A. L. Abdelhady)
  • Institute of Nanotechnology, CNR NANOTEC, Lecce, Italy (Dr. L. De Marco, Dr. C. Giansante, Dr. A. Rizzo)
  • Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy (Prof. A.F. Gualtieri)
  • Ruder Boskovic Institute, Zagreb, Croatia (Dr. J. Popović, Dr. M. Vrankić)
  • European Synchrotron Radiation Facility, Grenoble, France (Dr. C. Giacobbe)
  • Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland ( Dr. V. Olieric, Dr. N.M. Casati)
  • NEST, Istituto Nanoscienze, CNR, Pisa, Italy (Dr. A. Camposeo, Dr. D. Pisignano)
  • Dipartimento di Fisica ‘E. Fermi’, University of Pisa, Pisa, Italy (Dr. D. Pisignano)
  • Laboratory of Applied and Environmental Chemistry (LCAE), Mohamed first University, Oujda, Morocco (Prof. R. Touzani)
  • Laboratory of Technology and Solid Properties (LTPS), Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, Mostaganem, Algeria (Prof. A. Chouaih)
  • Laboratoire Physico-Chimie de l’Etat Solide, Département de Chimie, Faculté des Sciences, Université de Sfax, Sfax, Tunisia (Prof. H. Naili)
Lighting up the appealing world of hybrid perovskites (15/02/2022)
The growing demand for new compounds with excellent optoelectronic properties has motivated a strong scientific interest in developing and tailoring novel perovskites. Their unique physical properties make perovskites promising and appealing candidates for technological applications such as solar cells, LEDs, lasers, photodetector devices, etc… Perovskites can be described by the general formula ABX3 (see picture), where:
  • A is a monovalent cation (e.g., Cs+, MA+, FA+,…, with MA= methylammonium, FA=formamidinium);
  • B is a divalent metal cation (e.g., Sn2+, Pb2+);
  • X is a halide anion (e.g., Cl, Br, or I).
In three articles published in 2021 (Dhanabalan et al., 2021; Cinquino et al., 2021; Polimeno et al., 2021), researchers from Italy and Switzerland used the macromolecular crystallography beamline X06DA-PXIII at the Swiss Light Source (Switzerland), as well as BL-5A at the Photon Factory (Japan) to characterize hybrid organic-inorganic perovskites, for which the A cation is organic and the packing consists of alternating layers of organic and inorganic corner-sharing BX6 octahedra layers. The great and fascinating potential of these hybrid materials relies on the large tunability of their optoelectronic properties:  e.g.,  by changing the kind of organic molecules or the thickness of the inorganic slabs (i.e., the number n of the inorganic layers in the slabs) strong differences in the wavelength of the emission occur. To suitably engineer the optoelectronic properties of hybrid organic-inorganic perovskites, synchrotron radiation was instrumental (1) to identify and improve new crystalline materials, (2) to characterize the crystal packing, to identify the structure-property relationships, and consequently, to reveal the amazing optoelectronic properties of those new compounds. Single crystals of perovskites can be laminar samples of a few micron thick (as for our cases of study) with imbricate structures, which prevent the successful characterization using conventional laboratory X-ray sources. Here, small crystals down to a few tens of microns, combined with synchrotron beam turned out essential for successful structure solution and refinement of those new hybrid perovskites. In Dhanabalan et al., 2021, the collaboration with the Instituto Italiano di Tecnologia (IIT) of Genova, Italy, lead to the structural characterization of the hybrid perovskite (N-MDDA)2PbBr4, whose organic cation is an amine, revealing the presence of H-bonds responsible of the distortion of the inorganic chains and allowing to estimate the distortion degree of the chains. The collaboration with the Institute NANOTEC of the CNR of Lecce, Italy, yielded the crystal structure of the following 2 perovskites: (1) a new 2D hybrid organic-inorganic perovskite F(C6H5(CH2)2NH3)2PbI4 (Polimeno et al., 2021) featuring unique optical birefringence, as well as (2) two new 2D hybrid organic-inorganic perovskites (Cinquino et al., 2021), with a number of inorganic layers n > 1. The study proved the efficiency of a new synthesis protocol applied for preparing the compounds (C12)2(MA)n-1PbnI3n+1 (where C12= C12H25NH3+),  and determining the degree of distortion of the inorganic layers.  These works highlight the benefit of synchrotron radiation to characterize challenging crystalline perovskites crystals and open the door to further exploring the amazing world of perovskites. 
Link
Erionite Killer (17/05/2024)
L’erionite è uno dei cancerogeni naturali più pericolosi per l’uomo. Nell’Anatolia centrale, in Turchia, gli abitanti di tre paesini (Karain, Tuzköy e Sarihidir) l’hanno utilizzata inconsapevolmente per costruire abitazioni e edifici, ignari del fatto che il tufo friabile (contenente erionite) che utilizzavano, nascondeva un potere mortale che causava il cancro. L’Istituto di Cristallografia del Cnr (Cnr-Ic), in collaborazione con l’Università di Modena e Reggio Emilia e il sincrotrone di Grenoble, ne ha studiato in dettaglio la struttura cristallina: un primo importante passo verso la costruzione di un modello di cancerogenicità.
Link
Nanomateriali inesplorati per semiconduttori senza piombo (23/03/2022)
Messo a punto un metodo di sintesi chimica che consente di ottenere una classe inesplorata di nanomateriali semiconduttori, detti calcoalogenuri, conformi alla Direttiva UE sull’utilizzo di sostanze pericolose (RoHS). Molto stabili ed efficienti nell’assorbimento della luce solare, si candidano in alternativa ai semiconduttori contenenti piombo. Autori della scoperta i ricercatori dell’Istituto di nanotecnologia e dell’Istituto di cristallografia del Cnr, assieme ai colleghi dell’Università del Salento e dell’Istituto Italiano di Tecnologia. Il lavoro è pubblicato su Angewandte Chemie ed è oggetto di domanda di brevetto All’evolversi delle tecnologie fotovoltaiche e dell’optoelettronica emergente si affianca lo sviluppo di nuovi materiali di sintesi, anche su scala nanometrica. Tra questi, i nanocristalli colloidali di semiconduttori inorganici attirano considerevole interesse grazie alle loro proprietà ottiche ed elettriche e alla prospettiva di processi sintetici a basso costo. Un gruppo di ricercatori afferenti all’Istituto di nanotecnologia (Cnr-Nanotec) di Lecce e all’Istituto di cristallografia (Cnr-Ic) di Bari del Consiglio nazionale delle ricerche, assieme ai colleghi dell’Università del Salento e dell’Istituto Italiano di Tecnologia – IIT, ha elaborato un innovativo metodo di sintesi chimica che consente di ottenere una classe inesplorata di nanomateriali, detti calcoalogenuri di bismuto. Questi nanomateriali, conformi alla Direttiva Ue che pone restrizioni all’utilizzo di sostanze pericolose (RoHS), si sono rivelati molto stabili ed efficienti nell’assorbimento della luce solare. Ciò li candida a promettente alternativa ai semiconduttori contenenti piombo, largamente impiegati. I risultati della ricerca sono pubblicati su Angewandte Chemie ed oggetto di una domanda di brevetto. “Il nostro metodo di sintesi si è rivelato affidabile e versatile, consentendoci di esplorare la classe dei calcoalogenuri di bismuto e di prepararne nanocristalli puri”, spiega Danila Quarta di Cnr-Nanotec, autrice della ricerca. “I nanocristalli di calcoalogenuro di bismuto sono stati utilizzati per la formulazione di inchiostri fotoattivi, con i quali sono stati realizzati elettrodi capaci di convertire luce solare in corrente elettrica, aprendo così alla possibilità di fabbricare dispositivi fotovoltaici, fotoelettrochimici e optoelettronici in maniera semplice e relativamente economica. Abbiamo dato avvio a un filone di ricerca che apre ad opportunità nuove, tutte da esplorare. Il nostro obiettivo ultimo è di contribuire ad offrire una prospettiva nuova per la conversione dell’energia solare a basso impatto ambientale”. “Questo metodo ci ha inoltre permesso di ottenere una nuova fase cristallina, la cui struttura è stata determinata per la prima volta dal nostro gruppo di ricerca”, aggiunge Anna Moliterni di Cnr-Ic. “I risultati dello studio indicano che con ogni probabilità potremmo individuare una serie di nuovi materiali, ancora da scoprire” dichiara Liberato Manna, dell’Istituto Italiano di Tecnologia, coautore della ricerca.
Link
CNR award (01/10/2009)
Dr. Moliterni was the winner of one of the 100 awards for CNR researchers and technologists; the award was given to her ’for having achieved, in 2005, innovative results of particular excellence and strategic importance’.

Link
Mixed Organic Cations Promote Ambient Light-Induced Formation of Metallic Lead in Lead Halide Perovskite Crystals

Aniruddha Ray, Beatriz Martín-García, Mirko Prato, Anna Moliterni, Simone Bordignon, Davide Spirito, Sergio Marras, Luca Goldoni, Karunakara Moorthy Boopathi, Fabrizio Moro, Nicola Pietro Maria Casati, Carlotta Giacobbe, Makhsud I. Saidaminov, Cinzia Giannini, Michele R. Chierotti, Roman Krahne, Liberato Manna, and Ahmed L. Abdelhady

ACS applied materials & interfaces (Print) (2023) [IF=10.383]

Direct Band Gap Chalcohalide Semiconductors: Quaternary AgBiSCl2 Nanocrystals

Danila Quarta, Stefano Toso, Antonio Fieramosca, Lorenzo Dominici, Rocco Caliandro, Anna Moliterni, David Maria Tobaldi, Gabriele Saleh, Irina Guschchina, Rosaria Brescia, Mirko Prato, Ivan Infante, Adriano Cola, Cinzia Giannini, Liberato Manna, Giuseppe Gigli, Carlo Giansante

Chemistry of materials (2023) [IF=8.600]

Mixed Valence of Bismuth in Hexagonal Chalcohalide Nanocrystals

Danila Quarta Stefano Toso, Gabriele Saleh, Rocco Caliandro, Anna Moliterni, Andrea Griesi, Giorgio Divitini, Ivan Infante, Giuseppe Gigli, Cinzia Giannini, Liberato Manna and Carlo Giansante

Chemistry of materials (2023) [IF=8.600]

The crystal structure of the killer fibre erionite from Tuzköy (Cappadocia, Turkey)

Carlotta Giacobbe, Anna Moliterni, Dario Di Giuseppe, Daniele Malferrari, Jonathan P. Wright, Michele Mattioli, Simona Ranieri, Cinzia Giannini, Laura Fornasini, Enrico Mugnaioli, Paolo Ballirano and Alessandro F. Gualtieri

IUCrJ (2023) [IF=5.588]

Photophysical Behavior of Triethylmethylammonium Tetrabromoferrate(III) under High Pressure

Takeshi Nakagawa, Yang Ding, Kejun Bu, Xujie Lü, Haozhe Liu, Anna Moliterni, Jasminka Popovic, Marian Mihalik, Zvonko Jaglicic, Matús Mihalik and Martina Vrankic

Inorganic chemistry (2023) [IF=4.600]

New In Situ Catalysts Based on Nitro Functional Pyrazole Derivatives and Copper (II) Salts for Promoting Oxidation of Catechol to o-Quinone

Abderrahim Titi, Kaoutar Zaidi, Abdullah Y. A. Alzahrani, Mohamed El Kodadi, El Bekkaye Yousfi, Anna Moliterni , Belkheir Hammouti , Rachid Touzani , and Mohamed Abboud

Catalysts (2023) [IF=4.501]

Mixed Dimethylammonium/Methylammonium Lead Halide Perovskite Crystals for Improved Structural Stability and Enhanced Photodetection

Ray A.; Martin-Garcia B.; Moliterni A.; Casati N.; Boopathi K.M.; Spirito D.; Goldoni L.; Prato M.; Giacobbe C.; Giannini C.; Di Stasio F.; Krahne R.; Manna L.; Abdelhady A.L.

Advanced materials (Weinh., Print) (2022) [IF=32.086]

Halide perovskites as disposable epitaxial templates for the phase-selective synthesis of lead sulfochloride nanocrystals

Toso S.; Imran M.; Mugnaioli E.; Moliterni A.; Caliandro R.; Schrenker N.J.; Pianetti A.; Zito J.; Zaccaria F.; Wu Y.; Gemmi M.; Giannini C.; Brovelli S.; Infante I.; Bals S.; Manna L.

Nature communications (2022) [IF=17.763]

Colloidal Bismuth Chalcohalide Nanocrystals

Quarta D.; Toso S.; Giannuzzi R.; Caliandro R.; Moliterni A.; Saleh G.; Capodilupo A.-L.; Debellis D.; Prato M.; Nobile C.; Maiorano V.; Infante I.; Gigli G.; Giannini C.; Manna L.; Giansante C.

Angewandte Chemie (Int. ed., Print) (2022) [IF=16.823]

Ultrasonic Clusterization Process to Prepare [(NNCO)6Co4Cl2] as a Novel Double-Open-Co4O6 Cubane Cluster: SXRD Interactions, DFT, Physicochemical, Thermal Behaviors, and Biomimicking of Catecholase Activity

Abderrahim Titi, Rachid Touzani, Anna Moliterni, Carlotta Giacobbe, Francesco Baldassarre, Mustapha Taleb, Nabil Al-Zaqri, Abdelkader Zarrouk, and Ismail Warad*

ACS omega (2022) [IF=4.132]

A promising 1D Cd-based hybrid perovskite-type for white-light emission with high-color-rendering index

Mahdi Gassara, Rawia Msalmi, Xinghui Lui, Fredj Hassen, Anna Moliterni, Naoufel Ben Hamadi, Ahlem Guesmi, Lotfi Khezami, Taoufik Soltani, Houcine Naili

RSC advances (2022) [IF=4.036]

Synthesis, structural, biocomputational modeling and antifungal activity of novel armed pyrazoles

Titi A.; Touzani R.; Moliterni A.; Hadda T.B.; Messali M.; Benabbes R.; Berredjem M.; Bouzina A.; Al-Zaqri N.; Taleb M.; Zarrouk A.; Warad I.

Journal of molecular structure (Print) (2022) [IF=3.841]

Tuning of the Berry curvature in 2D perovskite polaritons

Polimeno L.; Lerario G.; De Giorgi M.; De Marco L.; Dominici L.; Todisco F.; Coriolano A.; Ardizzone V.; Pugliese M.; Prontera C.T.; Maiorano V.; Moliterni A.; Giannini C.; Olieric V.; Gigli G.; Ballarini D.; Xiong Q.; Fieramosca A.; Solnyshkov D.D.; Malpuech G.; Sanvitto D.

Nature nanotechnology (Print) (2021) [IF=40.523]

Managing Growth and Dimensionality of Quasi 2D Perovskite Single-Crystalline Flakes for Tunable Excitons Orientation

Cinquino M.; Fieramosca A.; Mastria R.; Polimeno L.; Moliterni A.; Olieric V.; Matsugaki N.; Panico R.; De Giorgi M.; Gigli G.; Giannini C.; Rizzo A.; Sanvitto D.; De Marco L.

Advanced materials (Weinh., Print) (2021) [IF=32.086]

Engineering the Optical Emission and Robustness of Metal-Halide Layered Perovskites through Ligand Accommodation

Dhanabalan, Balaji; Biffi, Giulia; Moliterni, Anna; Olieric, Vincent; Giannini, Cinzia; Saleh, Gabriele; Ponet, Louis; Prato, Mirko; Imran, Muhammad; Manna, Liberato; Krahne, Roman; Artyukhin, Sergey; Arciniegas, Milena P.

Advanced materials (Oxf.) (2021) [IF=32.086]

Crystal structure determination of a lifelong biopersistent asbestos fibre using single-crystal synchrotron X-ray micro-diffraction

Giacobbe, Carlotta; Di Giuseppe, Dario; Zoboli, Alessandro; Gualtieri, Magdalena Lassinantti; Bonasoni, Paola; Moliterni, Anna; Corriero, Nicola; Altomare, Angela; Wright, Jonathan; Gualtieri, Alessandro F.

IUCrJ (2021) [IF=5.588]

Crystal structure, DFT studies and thermal characterization of new luminescent stannate (IV) based inorganic-organic hybrid compound

Sayer I.; Dege N.; Ghalla H.; Moliterni A.; Naili H.

Journal of molecular structure (Print) (2021) [IF=3.841]